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This paper reports the numerical results of the fundamental problem of interaction of 
surface radiation with free convection in an open cavity with air as the intervening medium. 
Rayleigh numbers (based on height) in the laminar range 10a-108 have been considered 
in the present study. Surface radiation was found to alter the basic f low pattern as well 
as the overall thermal performance substantially. A physical insight into the effect of 
radiation has been provided and correlations have been developed for convective as well 
as radiative transfer based on the numerical results. 
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Introduction 

The importance of natural convection as a mode of heat 
dissipation without any expenditure of high-grade energy need 
not be overemphasized. The present study addresses three basic 
points. 

First, instead of a closed cavity, an open cavity with a 
continuous intake of fresh air and exhaust of heated air is far 
more advantageous with no attendant problems like stratifica- 
tion, which occurs in a completely closed cavity. Hence, it offers 
one method of heat dissipation from electronic equipment and, 
to protect the component from external disturbances, housing 
the component in a slot (open cavity) may be required, although 
mounting it on a vertical flat plate will be advantageous for 
both convective and radiative heat transfer. The effect of 
radiation on convection in a closed cavity has been considered 
by Balaji and Venkateshan (1993). 

Second, the present study may simulate the cooling of a 
microcomponent placed in a slot similar to the one considered 
by Behnia and de Vahl Davis (1990). However, in the present 
study the whole left wall is considered an isothermal heat 
source. This condition may be realized if there is a large number 
of small, flush-mounted, heat-generating components placed 
along the left wall. The same geometry has been considered by 
Lage et al. (1992) but with a different application in mind (i.e., 
ash hopper design of power plants). In the case of Behnia and 
de Vahl Davis, the cavity spacing is on the order of a few tens 
of millimeters and the effect of radiation has not been 
considered. In the case of Lage et al., the cavity spacing is on 
the order of a few hundreds of millimeters and a simplistic 
model has been used for radiation. Lage et al. have worked out 
the convective heat flux independent of radiation by assuming 
various temperatures on the right wall (Figure 1). By using these 
convective fluxes, the radiosity equations have been solved to 
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determine the equilibrium temperature of the fight and bottom 
wall, which together have been assumed to be at one 
temperature. A realistic model would involve the assumption 
that both the right and bottom walls attain temperatures that 
are determined by a balance between convection and radiation. 
This means that the flow equations cannot be solved 
independently of the radiation equations and hence the two 
must be solved simultaneously. Notwithstanding the fact that 
this procedure is computationally more involved, it is indeed 
necessary from the viewpoint of consistency in specifying 
boundary conditions on the walls, but also from the viewpoint 
of proper appreciation of the physics associated with the 
problem. This point will be clearly brought out in the section 
on results and discussion. 

Third, the present study presents comprehensive correlations 
for determining the overall heat transfer for a wide range of 

U>O a..--~=O 
ax 

U<0,~=0  

C 
=1.0 

U=V=0 

® 
U=V=0 

d 

Q X,U 

U=V=0 

f qcond ~'qrad. = 0 
a¢  a¢, 

- - - -  ( i e )  ~-~-or ~ =qr 

Figure 1 Problem geometry 

Y,V 

Int. J. Heat and Fluid Flow, Vol. 15, No. 4, August 1994 317 



Radiation and free convection. C. Balaji et al. 

parameters and also discusses the limitations in realizing the 
thermal boundary conditions used. 

Mathematical  formulation 

The flow and heat transfer in the two-dimensional cavity are 
governed by the conservation of mass, momentum and energy. 
The schematic of the cavity with a height of H, spacing of d 
along with the system of coordinates is given in Figure 1. The 
governing equations in the normalized form, in the 
vorticity-stream function formulation are 

&o &o &b 
U - -  + V - -  = Pr [V2~o] - R a - -  (1) 

t3X c~Y c~Y 

V2~k = - Pr 09 (2) 

Vz~b = U eO + V c~b (3) 
OX dY 

The fluid under consideration is air (Pr = 0.71). 

Boundary conditions on solid walls 

Free convection problem. 

Bot tom wall: 

X = 0 , 0 <  Y < 2 ,  f f=cons tan t ,  

09-- - - 0  
Pr OX2' OX 

(4) 

Lef t  wall: 

Y = O, 0 < X < 2AR,  ~ = constant, 

1 051// 
c o -  4~= 1.0 

Pr ~ y z '  

Right  wall." 

Y = 2, 0 < X < 2AR,  ~k = constant, 

1 ~ d~ 
c o - -  - - 0  

Pr 0Y 2' 0Y 

(5) 

(6) 

Free convection with surface radiation. The boundary 
conditions for vorticity and stream function are the same as 
those specified earlier. However, the thermal boundary 
conditions on the bottom and right walls are based on a 
balance between radiation and convection (i.e., the walls are 
truly adiabatic). 

Bot tom wall." 

X =O, O < Y < 2, ~ = N R c ( j - - i )  (7) 

Right wall." 

Y = O, O < X < 2AR,  ~9$ = NRc(j  - i) 
~ Y  

(8) 

Notation 
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Constants in the expression for stream function, 
Equation 9 
Aspect ratio, H/d Pr 
Spacing, m qR 
Enhancement due to radiation, Ra a 

q o v e r a l l ( w i t h r a d i a t i o n )  , Equation 20 Ran 

qoverall (without radiation) T 
Acceleration due to gravity, m/s 2 7"1 
Grashof number based on d, gB(T  1 - T2)d3/v  2 T2 
Grashofnumber based on H, gB(T  1 - T2)H3/v 2 TR 
Height of the cavity, m u 
Elemental dimensionless irradiation, l / a T ~  U 
Elemental irradiation, W/m 2 v 
Elemental dimensionless radiosity, J / a T ~  V 
Elemental radiosity, W/m 2 x 
Thermal conductivity of fluid, W / m K  X 
Radiation conduction interaction parameter, Y 
aT~d/[(Tz -- T2)k ] Y 
Convection Nusselt number, -(Od?/8 Y)r= o o, 2 
or -- (~c~/SX)x = o 
(based on H) N u c A R  
Mean convection Nusselt number, fl fO ~2AR 2 (Nut) d Y e r  (Nut) d X  e 

2 J o 2A R  v 
Overall Nusselt number, Nu c + Nu R ~b 
Radiation Nusselt number, NRc ¢j -- i) ~k' 
(based on H) Nu a A R  ~b 

fo " (NuR) d Y  a Mean radiation Nusselt number, co, 
2 co 

or f2AR (NuR) 
Jo 2 ~ R  dX 

Prandtl number, v/~ 
Elemental radiative heat flux, (J - I) W/m 2 
Rayleigh number based on d, Gr a Pr 
Rayleigh number based on H, Gr H Pr 
Temperature, K 
Temperature of the left wall of the enclosure, K 
Temperature of the ambient, K 
Temperature ratio, T2/T 1 
Vertical velocity, m/s 
Dimensionless vertical velocity, ud/~ 
Horizontal or cross velocity, m/s 
Dimensionless horizontal velocity, vd/~ 
Vertical coordinate, m 
Dimensionless vertical coordinate, x /d  
Horizontal coordinate, m 
Dimensionless horizontal coordinate, y/d 

G r e e k  S y m b o l s  

Thermal diffusivity of the fluid, m2/s 
Cubical expansion coefficient of fluid, 1/K 
Emissivity of the three walls 
Kinematic viscosity of the fluid, m2/s 
Dimensionless temperature, ( T -  T2)/(T 1 - T2) 
Stream function, m2/s 
Dimensionless stream function, ~k'/~ 
Stefan Boltzmann constant, 5.67 x 10 -8 W/m2K 4 
Vorticity, 1/S 
Dimensionless vorticity, co' d2/v 
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Boundary condit ions on the top 

Energy c o n d i t i o n s .  When the vertical velocity U is negative 
(i.e., flow is into the cavity), the temperature T is T2 (i.e., 4) = 0), 
that of the ambient. When the vertical velocity U is positive, 
then the required condition is &)/aX  = 0. This condition is 
quite easy to justify. By the time the fluid exits the cavity, it 
has already picked up all the heat it can and hence the 
derivative of the temperature at the top is essentially zero. 

M o m e n t u m  c o n d i t i o n s .  For the momentum conditions, 
different options have been suggested. One option is to assume 
V (cross velocity) to be zero and the other condition is X 
derivative of vertical velocity ~U/OX is zero. From a physical 
standpoint, cross velocity to be zero is justifiable. The derivative 
of the vertical velocity being zero means that the fluid velocity 
profile is invariant with respect to X. It resembles the fully 
developed flow condition. This condition has been used by 
Lage et al. (1992). The other condition that has been used is 
~V/dX  = 0 (Chan and Tien 1985). This is more a smoothing 
condition, as it means that the second derivative of stream 
function t~26/t~X 2 is zero. 

Both the conditions that have been used highlight certain 
important points. For  a tall cavity, at the top it is only the 
vertical velocity and its gradients (along the Y direction) that 
are important. The horizontal velocity and its derivative are 
negligibly small. Experimental confirmation that these 
boundary conditions are adequate to study the heat transfer 
and flow characteristics of the cavity has been reported in 
Chart and Tien (1985). It can be demonstrated that both 
conditions are actually very similar and, in terms of physical 
interpretation, lead to the same conclusions. 

Let the stream function near the top boundary be 
represented by a cubic polynomial in X and Y(Figure 2). The 
cubic polynomial was chosen so that the second derivative of 
6 can still be a function of X and Y, which is less restrictive 
than a second-degree polynomial that results in both ~26/~X 2 
and ¢326/¢3Y2 being constants. 

6 = a l + b l X + c l X 2 + d l X 3 + e l Y + f l y 2 + g l Y  3 (9) 

There are seven constants and seven conditions required: 61, 
62, 63 are known; 0)2 (at the solid wall) and 0)3 (at the interior 
node) are also known. Two additional conditions are 

V = 0 (10) 

dV dU 
- - = 0  or - - = 0  (11) 
t3X dX 

o F r ' ] o  _ 
I - 

S 

t .  

_= : • 

Local Coordinate 
system 

(i) (o.o) 
(~ )  ( O , - r )  

0 (-s, 0) 

Figure 2 Local coordinate system for generation of vorticity and 
stream-function conditions 
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Application of the five known conditions with Equations 10 
and 11 gives 

(63 - 6 , )  
0 )  1 = 0 )  3 -1- (12) 

S 2 

where 

S = ( X 3  - Xl) 
But to satisfy the compatibility criterion that V = 0, 63 must 

equal 61. Hence, 0)1 = 0)3. So, the boundary condition on 
vorticity turns out to be d0)/dX = O. Thus vorticity is invariant 
with respect to X on the top boundary. It can now be proved 
that this actually means that the condition dU/~X = O, used 
by Lage et al. (1992), will be automatically satisfied. 

dV dU 
0) . . . .  (13) 

dX t3Y 

and when 

dV 
- - = 0  
dX 

dU 
0) ~ - -  (14)  

d Y  

The condition that has been derived for vorticity implies that 
0) # f ( X )  at the top. Hence, 0) can be a constant or a function 
of Y, 

dU 
f ( Y) "~ _ _  

dY  

U ~ g(Y) (15) 

which means dU/dX = 0 at the top. This is indeed the condition 
used by Lage et al. In terms of physical interpretation, it means 
that a cross placed in the fluid will experience the same rotation 
at the top and at a station near the top but just below it. In 
fact, it means that the velocity can be deemed to be fully 
developed and that the U profile is invariant with X. So it can 
be seen that two related but yet different boundary conditions 
in the primitive variable method lead to the same result in the 
0) - 6 method, and 6 and 0) can indeed be specified on a free 
boundary. It will be shown later that with these specifications 
convergent solutions are obtained to the governing equations. 

M e t h o d  o f  s o l u t i o n  

Free convection equations 

Equations 1, 2 and 3 in nondimensional form were solved by 
a finite-volume method based on Gosman et al. (1969) with a 
31 x 31 nonuniform grid system. Nonuniform grids with very 
fine grids near the walls were generated with a cosine function 
and were used for the horizontal direction (Y). Closely spaced 
grids were also used near the bottom walls for the vertical 
direction (X). The grid pattern used is shown in Figure 3. 
Underrelaxation with a relaxation parameter of 0.5 was used 
for all three equations to obtain convergent results. Upwinding 
was used for the inertia terms to ensure that the convection 
coefficients that arise in the algorithm are positive or at the 
worst zero, but never negative, thus ensuring stable and 
convergent solutions. The maximum error in temperature at 
Raa = 106 was 0.2 percent on temperature. The local Nusselt 
numbers were evaluated using three-point interpolation 
formulae and the mean Nusselt number was determined using 
the extended trapezoidal rule for nonuniform step sizes. 
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Figure 3 Grid pattern of the cavity 

Radiation equations 

The grids used for convection were retained for radiation. 
Radiative transfer from the walls was evaluated based on the 
enclosure method, with each wall being divided into 30 zones. 
The view factors were evaluated using Hottel's crossed-string 
method. The appropriate radiosity equations in nondimen- 
sional form are 

120  
j ,  = g i ( T i / T 1 )  4 q- (1 - el) ~ .  F q j j ,  i = 1 - 120 (16) 

j = l  

The first term on the right-hand side represents the emission 
term and the second term is the reflected radiation. The 
summation is over all the irradiation terms for that particular 
wall element. The radiosities are updated in every iteration for 
the flow equations, because they are dependent on the 
temperature of the wall elements. After all the radiosities are 
known, the irradiations are evaluated and net radiant flux from 
each zone is evaluated. This is balanced against conduction 
through the boundary condition equation. 

- -  = N R c ( j  - -  i) 
~ X  

o r  

- -  = N R c ( j  - -  i) (17) 
dY 

depending on the respective element on the bottom or right 
wall, as the case may be. The new value of nondimensional 
temperature is determined on the bottom and right walls. This 
updated value of temperature is used to solve the flow 
equations in the ensuing iteration and the procedure is repeated 
until convergence is achieved. 

Calculation of overall heat transfer from the cavity 

The overall heat transfer from the cavity is made up of two 
par ts-- the convective part and the radiative part. Since the 
right wall and bottom wall are truly adiabatic, the sum of the 
convective heat transfer from the two walls will be exactly equal 

to the sum of the radiative heat fluxes received by them, but 
with an opposite sign. Hence, the overall heat flux for the cavity 
based on the base area is given by 

qtotal  = q . . . .  (left) "~- qrad(left)  ( 1 8 )  

where the radiation heat transfer from the left wall is given by 

qrad(lef t)  = qrad(r ight)  + qrad(bottom) "l- qrad( top)  (19) 

As stated earlier, ignoring the sign, q . . . .  (right) = qrad(r ight)  and 
qconv(bottom) = qrad(bottom)" Hence, the enhancement factor E~ due 
to radiation defined as the ratio of overall heat transfer when 
radiation is present (~ # 0) to the overall heat transfer when 
radiation is not there (E = 0) is given by 

ER = q . . . .  Cleft) + qrad(left) (20) 

qconv(left) 

Since the flow is predominantly a boundary-layer type, the 
coupled boundary condition for the bottom wall does not 
greatly affect the convective heat transfer from the left wall 
itself. Stated more explicitly, q . . . .  (Left) remains the same with 
and without radiation in the limits of numerical accuracy. 

Results and discussion 

Validation for pure natural convection (~ = O) 

For the case of pure natural convection, the code developed in 
the present study is validated with that of Lage et al. (1992). 
For purposes of validation, the right wall is assumed to be at 
the same temperature as that of the left wall (i.e., 
nondimensional temperature ~b = 1.0) and the bottom wall is 
insulated, which represents one of the cases considered by Lage 
et al. for pure natural convection. Results were obtained for 
aspect ratios 2-5 and Rayleigh numbers (Rad) from 105-107. 
However, the results were correlated with the Rayleigh number 
based on H to facilitate comparison with Lage et al. The 
Nusselt numbers, which by definition in the present study mean 
Nusselt number based on spacing d, were modified so that they 
are based on H. Also the Rayleigh numbers were modified to 
be based on H in order to facilitiate comparison with Lage et 
al. Null was correlated in the form of Nun = a ( R a n )  b and a 
and b were determined to be 0.436 and 0.259, respectively. In 
all other places in the present text, both the Rayleigh number 
and the Nusselt number are based on spacing d unless 
otherwise stated. The agreement between the data and 
correlation seen in Figure 4 is very good. The values of a and 
b reported in Lage et al. are 0.42~).44 and 0.26, respectively. 
The excellent agreement between the two results is a strong 
indication of the soundness of the present code. Besides, it also 
vindicates the specification of the vorticity and stream-function 
conditions at the free boundary used in the present solution 
procedure. 

For a related geometry, but with the opening on the right 
side (Figure 5), Chan and Tien (1985) have given numerical as 
well as experimental results. They found that the outgoing flow 
for Ra d = l 0  6 is around 30 percent, with the experiment and 
numerical calculations differing by 2 percent. These results are 
of primary interest because the comparison of these trends with 
the present results will validate the present results even further. 

In this study, to facilitate comparison with the data of Chan 
and Tien, the governing equations were modified and one test 
run was performed to achieve strict validation against their 
carefully done experiments. The source term in the X 
momentum and Y momentum equations become Ra ~b Cos 0 
and Ra ~b Sin 0, respectively, where 0 is the tilt angle of the 
cavity with the vertical. Hence, the source term in the 
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vorticity equation becomes 

- R a [ C o s  0 0 q ~ - S i n 0  ~q~l ~ ~-~ (21) 

When 0 is zero, the cavity becomes a vertical cavity and the 
source term is - R a  t3dp/OY. When 0 = 90 °, the source term is 
Ra O(a/OX and the cavity now becomes the one considered by 
Chan and Tien. With this modification in the governing 
equations, along with the necessary modifications in the 
boundary conditions as given in Figure 5, results were obtained 
for Ran = 106 and the aspect ratio (AR = 7) similar to the one 
considered in their study. The mean Nusselt number was 
determined to be 14.4, as opposed to 15 obtained by Chan and 
Tien. The error is around 4 percent and the agreement is very 
good. The temperature and velocity profiles are in excellent 
agreement (qualitatively) and the outgoing flow was found to 
occupy about 32 percent of the opening area, which is very 
close to the value of 30 percent obtained by them. 

The present numerical investigation has thus been validated 
against a standard numerical as well as a standard experimental 
result. It speaks for the efficiency of the quick, but all the same, 
accurate finite-volume method with the voriticity-stream 
function formulation. More importantly, it also proves that the 
boundary conditions that have been derived for vorticity and 

qb = 1.0 

qcond.= 0 
U = V  : 0  

/ / / / / / / / / / / / / , / J  oI _v.oj 
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~=0 
9 

Figure 5 Problem geometry of Chan and Tien (1985) 
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stream function are adequate to study the flow and heat 
transfer characteristics of the problem under consideration. 

Val idat ion for  rad ia t ion :  the case o f  e = 1 

In order to validate the radiation routine, a typical case of all 
the three walls being at the same temperature (T1) was 
considered. The convection routines were suppressed to study 
the effect of radiation alone. The radiation Nusselt number 
based on spacing d for a temperature ratio of 0.8 and N~c = 10 
was determined to be 5.89. Because the three walls are 
isothermal and the enclosure is black, one expects the heat 
transfer from the top to be equal to the heat transfer from the 
base (if there were not sidewalls), given by NRc[1 -- T~], which 
in this case equals 5.904. Indeed, the agreement between the 
simple calculation and the one obtained by the elaborate zone 
analysis is excellent and the error is only around 0.2 percent. 
However, for the actual problem being considered (Figure 1), 
there is a strong interaction between convection and radiation 
as the right and bottom walls float at a temperature governed 
by convective and radiative balance. Hence, a zone analysis 
with 120 zones indeed becomes necessary to ensure grid 
compatibility between radiation and convection. This is a 
prerequisite for stable and convergent solutions. 

Effect  o f  rad ia t ion 

In this section, attention is focused on the influence of radiation 
and hence the extreme cases of e = 0 and e = 1 will alone be 
discussed. However, the correlations to be presented in the 
following section include emissivities in the range 0-1. Figure 
6 shows the vertical velocity profile at the top of the cavity for 
Rad = 500,000 and aspect ratio = 4 when e of all the walls is 
0 (i.e., there is no radiation). It can be seen that the outgoing 
flow area is around 18 percent of the total area. The figure also 
clearly indicates sharpness of the velocity profile toward the 
heated left wall and confirms the boundary-layer type of flow. 
Figure 7 highlights the velocity profile for the same Rad and 
aspect ratio, but with the e of all the walls being 1. If one takes 
a closer look at Figures 6 and 7, it can be seen that instead of 
one flow loop occurring in the pure convection case, there are 
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two loops when radiation is present. So the radiative heat 
transfer from the left wall has heated both the right and the 
bottom walls, and, under equilibrium, these two walls lose heat 
convectively to the air. Thus, radiation changes the basic flow 
physics associated with the problem completely. Bear in mind 
that the fluid under consideration (air) is nonparticipating and 
all of the effects mentioned earlier are purely due to wall 
radiation. Hence, the interaction between radiation and free 
convection in this class of problem is indeed very strong and 
disproves the common claim that at low temperature levels 
radiation can be ignored. Figure 8 shows the temperature 
distribution across the cavity for the same set of parameters 
(Ra~ = 500,000; AR = 4; e = 1) for all the walls. It can be seen 
that the bottom wall is substantially heated because of 
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Figure 8 Temperature prof i les across the cavi ty:  Rad = 500,000;  
AR = 4; s = 1 
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radiation. If one calculates the mean temperature for this case 
(T~ = 100°C, T 2 = 25°C), it would be 55°C. If there is no 
radiation, the same wall would have been at an average 
temperature close to 33°C. The convection Nusselt number 
distribution along the left wall for the two cases is given in 
Figure 9. Though there is a slight change in the nature of the 
distribution near the bottom, the mean Nusselt number from 
the left wall is almost constant for both cases. Figure 10 gives 
the distribution of temperature along the right wall for the same 
parameters. The average temperature of the wall turns out to 
be around 62.5°C. The enhancement due to radiation (ER) for 
this set of parameters is around 1.8, which means radiation 
heat transfer is 80 percent of the convective heat transfer. Figure 
11 shows the Nusselt number distribution along the right wall. 
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Figure 10 Temperature d ist r ibut ion a long the r ight wal l :  Rad = 
500,000;  AR = 4; ~ = 1 
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The rather peculiar nature of distribution is because of the 
nonisothermal nature of the right wall. The Nusselt number 
distribution along the left wall has also been included to get 
an idea about the relative rates of convection from the left and 
right walls. Figure 12 highlights the variation of the radiation 
Nusselt number along the left wall for the same set of 
parameters. It is seen that even though the left wall is 
isothermal, the radiation Nusselt number has a strong 
distribution, basically because of the nonisothermality of the 
other walls. 

Corre la t ions  

The range of  parameters for which calculat ions have been 
done are 104 < Ran < 10 a, 0 < ~ < 1, 0.75 < T R < 0.85, 9 < 
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Figure 12 Radiat ion Nusselt  number distribution along the left 
wall: Rad = 500,000; AR = 4; e = 1 
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NRc < 30, and 1 < AR < 5. All the walls were assumed to be 
of the same emissivity. Based on a large set of numerical data 
(35 data points), the convection Nusselt number (Nuc) based 
on H for convenience, correlates as 

Nu c (based on H) = 0.426 (Gr °'2s*) 
(Nac/(Nac + 1))1'81(1 + e)  - 0 ' O s 9  (22) 

The Grashof number exponent of 0.254 is close to the normally 
quoted values for this geometry (Lage et al. 1992). NRc is chosen 
in its present form because it is actually a superfluous 
parameter if only one fluid is considered. But if the temperature 
level changes, while the temperature difference between the left 
wall and ambient remain the same, then Nuc can be mildly 
affected because of radiative effects. For  this reason, Nac is 
retained in the correlation. For instance, if Gr changes by 20 
percent then Nuc changes by 4.7 percent, whereas if NRc 
changes by 20 percent then Nuc changes only by 0.9 percent. 
Hence, Nuc is a weak function of NRc. The 1 + e term has a 
small negative exponent, which means that at higher ~, the drop 
in the convective Nusselt number increases. But even at ~ = 1, 
this drop is only 3 percent. Hence, one can conclude that 
convection from the left wall is relatively insensitive to 
radiation. From a physical standpoint, this seems reasonable, 
as the convective flow is predominantly a boundary-layer flow 
(unlike a closed cavity) and therefore the right wall does not 
have any influence on convection from the left. The excellent 
agreement between the correlation and the data can be seen in 
Figure 13. Gr has been used for convenience, as usually results 
reported for air use Gr in preference to Ra. 

Correlation for radiation." 

N--u R (based in H) = 1.306 Gr~°°79(1 - -  T ~ )  1 '223 ~ ' 1 . 2 1  /~0.875 A 
' ' R C  

(23) 

Radiative flux is proportional to T 2 -  T2*. Hence, the 
temperature ratio is correlated in the form given in Equation 
23. In regards to T~, it appears in the N~c term. As e increases 
NuR increases and hence the power law form is used for e. The 
influence of convection is brought out by the  Gr term. At this 
juncture, it needs to be emphasised that NUR actually includes 
the convection from the right and bottom walls, as these two 
walls are truly adiabatic. Hence, there is an inherent coupling 
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35 a very significant role even in the case of the asymptotic 

z 
limit of the whole cavity being isothermal. 

5c 

O< 
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Radio tion Nusselt number (data) 

07 I General comments 

The analysis presented in the present paper considers only 
laminar flow. If Ra, exceeds 10’ or so, then the coupled 
equations of turbulent natural convection and radiation have 
to be solved simultaneously. Also, the present study assumes 
that the external environment (air) has no influence on the 
results. This assumption is valid because of the high value of 
the vertical velocity at the top end of the cavity, as opposed to 
the low velocity prevailing in the ambient. However, this 
assumption may not be valid for cavities with AR < 1, which 
is outside the range of parameters of the present study. 

Figure 14 Comparison of ma (data) with &in (correlated) 

in the open cavity problem. The goodness of the fit can be seen 
in Figure 14. 

Conclusions 

The present study reported the influence of thermal conditions, 
particularly radiation, on a relatively new geometry-an open 
cavity. Correlations based on the numerical results were 
presented for both convection and radiation after a rigorous 
validation. Radiation was found to enhance overall heat 
transfer substantially (50-80 percent) depending on the 
radiative parameters: Lastly, the study’has also brought out 
the efficacy of the vorticity and stream-function method for this 
class of problems. 

Effect of conduction 

It is instructive to examine the thermal conditions on the walls 
a little more closely. The adiabatic condition used in the present 
study for the right and bottom walls can be realized if these 
walls are sufficiently thick and are made of a material of very 
low thermal conductivity. Opposed to this is the case of a thin 
wall composed of material of very high thermal conductivity. 
Representative calculations were performed for this case, in 
which the whole cavity will be at one temperature. Typically 
for AR = 2 and Ra, = 5.2 x 105, T1 = 100°C and T2 = 25°C 
and E = 1, the adiabatic model considered in the present study 
gave an overall Nusselt number of 20, with a radiation 
contribution (qra,Jqconv) amounting to 85 percent. The perfectly 
conducting cavity gave an overall Nusselt number of 29.1, with 
a radiation contribution of 51 percent. Hence, radiation plays 
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